ATMOSPHERIC CHEMISTRY RESEARCH AT THE AIR POLLUTION RESEARCH CENTER, UCR

Roger Atkinson, Janet Arey, Jingsong Zhang and Paul Ziemann

CDAWG Big Bear, October 20, 2006

Photochemical Air Pollution

 Photochemical air pollution is caused by the interaction of sunlight with oxides of nitrogen (NO_x = NO + NO₂) and volatile organic compounds (VOCs) emitted into the atmosphere.

Emissions of VOCs and NO_x

- ~1,500 Million tons per year of organic compounds (not including methane) are emitted into the atmosphere from natural (or biogenic) sources and from human activities.
- On a global basis, 80-90% of these nonmethane organic emissions are from vegetation.
- NO_x is emitted mainly from combustion sources – vehicles and fossil-fueled power plants being prime examples.

Biogenic VOCs from vegetation

Anthropogenic emissions

Consequences of VOC emissions

In the presence of oxides of nitrogen (NO_x) and sunlight, a series of reactions occur leading to photochemical air pollution, which includes:

- Formation of ozone and other toxic chemicals.
- Formation of secondary aerosol (in addition to directly emitted aerosol).

Morning, vehicle emissions

Afternoon, pollution

50 km altitude

$$O_2$$
 + sunlight \rightarrow O + O
O + O_2 \rightarrow O_3

transported downward by convection

STRATOSPHERE

15 km

$$O_3$$
 + sunlight $\longrightarrow O_2$ + O^*
 $O^* + H_2O \longrightarrow OH + OH$ hydroxyl radical

The hydroxyl (OH) radical is a key reactive intermediate

The atmosphere is a large chemical reactor

Current research at APRC

- Kinetics, products and mechanisms of gasphase reactions of individual VOCs with OH radicals, NO₃ radicals and O₃.
- Chemical pathways leading to formation of secondary organic aerosol from reactions of individual VOCs.
- Ambient measurements of selected organics, including PAHs and nitro-PAHs, and comparison with laboratory studies.
- Real-time ambient measurements of selected chemical species by spectroscopic methods.

Gas-phase studies

Janet Arey Roger Atkinson

One of three ~7000 liter volume Teflon chambers.

20% of blacklamps are on.

5870 liter volume evacuable chamber

5870 liter volume evacuable chamber

Direct air sampling atmospheric pressure ionization tandem mass spectrometer (API-MS/MS)

Gas and aerosol studies: alkanes

- Liquified petroleum gas (LPG).
- 50-60% of gasoline.
- 50-60% of organics in vehicle exhaust.
- ~50% of non-methane VOCs in air in urban areas.

CH₃CH₂CH₂CH₃ (CH₃)₃CH
$$H_2$$
C CH_2
 n -butane isobutane H_2 C CH_2
 CH_2
 CH_2

Alkanes react with OH radicals in the atmosphere

Product yields (as of 1982-1994)

alkane	% carbonyls	% nitrates	% missing
<i>n</i> -butane	84	8	8
<i>n</i> -pentane	~30	12	~58
<i>n</i> -hexane	low	21	high

From data in Carter et al., 1976; Atkinson et al., 1982.

Missing products postulated to be 1,4-hydroxycarbonyls, formed after alkoxy radical isomerization (Carter et al., 1976)

Further progress was halted until new analytical techniques became available

API-MS analyses in positive ion mode

API-MS spectra of OH + *n*-butane, *n*-pentane and *n*-hexane

API-MS analyses in negative ion mode

OH + C_5 - C_8 *n*-alkanes: NO_2 - adducts

Solid-Phase MicroExtraction fibers

Can be coated with a chemical for on-fiber derivatization of carbonyl-containing compounds, followed by GC analyses.

F CH₂ONH₂ + O C R F CH₂ON C R F F F F PFBHA
$$\rightarrow$$
 CH₂ON C R \rightarrow F \rightarrow F \rightarrow F \rightarrow CH₂ON \rightarrow C \rightarrow R \rightarrow CH₂ON \rightarrow C \rightarrow PFBHA \rightarrow Oxime \rightarrow CH₂ON \rightarrow C \rightarrow

Fibers are retractable. After coating with PFBHA, the fibers are exposed to the chamber contents with the chamber mixing fan on for typically 5 min.

Fiber, ~20 mm long

Product yields (%) in air at 50% RH

alkane	carbonyls	nitrates	hydroxy- carbonyls	hydroxy- nitrates
<i>n</i> -pentane	50	10.5	54 (36)	2.6
<i>n</i> -hexane	10	14	57 (53)	4.6
<i>n</i> -heptane	<1	18	51 (46)	4.7
<i>n</i> -octane	<1	23	53 (27)	5.4

Yields in parentheses from API-MS in dry air (3-5% RH)

Success so far!

But what happens to 1,4-hydroxycarbonyls in the atmosphere?

5-Hydroxy-2-pentanone (5H2PO) is the only commercially available 1,4-hydroxycarbonyl

FT-IR spectra of a 5H2PO - N₂ mixture in the dark

5-Hydroxy-2-pentanone has lifetime of 1.1 hr in dry air.

4,5Dihydro-2-methylfuran is stable in dry air, but converts to 5H2PO at 5% relative humidity, with a lifetime of 3.5 hr.

CH₃C(O)CH₂CH₂CH₂OH
$$\longrightarrow$$
 OH CH₃
5-hydroxy-2-pentanone \longrightarrow \longrightarrow CH₃ \longrightarrow CH₃

4,5-dihydro-2-methylfuran

Reactions of 5-hydroxy-2-pentanone and 4,5-dihydro-2-methylfuran

4,5DH2MF reacts very rapidly with OH radicals,
 NO₃ radicals, and O₃. Daytime lifetimes:

```
n-Pentane: 1.5 day (OH) 5-Hydroxy-2-pentanone: 9 hr (OH) 4,5-Dihydro-2-methylfuran: 38 min (OH) 7 \text{ min} (O<sub>3</sub>)
```

Relative humidities where dihydrofuran formation is important

Aerosol-phase studies

Paul Ziemann

Particle Beam Mass Spectrometer (TDPBMS)

Real-Time Mass Spectra of SOA from Decane and Pentadecane + OH/NO_x

Reactions of 1,4-Hydroxycarbonyls

tetrahydrofuran

Desorption Profiles of SOA from Decane and Pentadecane + OH/NO_x

50A Yields from Linear Alkanes + OH/NO_x

Zingsong Zhang

Spectroscopic studies

Cavity Ring-Down Spectroscopy (CRDS)

- Quantitative and absolute measurements
- High sensitivity with a long effection absorption path (~ km)
 in a compact setup (~ m)
- Spectroscopic selectivity
- Real-time and in-situ detection

Typical CRDS Signal

Usable data in ~ 3.5 τ , effective absorption length ~ 21 km (Speed of light = 300 m/ μ s)

Cavity Ringdown Spectrometer

Mirror

CRDS Absorption Spectrum of HONO

HONO Concentration ~ 1 ppm

CRDS Detection of HONO

Number density of HONO is based on measurements using a NO-NO_x Analyzer 1 ppm = 2.38×10^{13} molecules/cm³ at 735 Torr and 25° C

Detection Sensitivity for HONO

- Detection sensitivity
 5 ppb/15 s (3σ)
- Recently improved to 1 ppb/15 s (3 σ) with high-quality mirrors ($\tau_0 \sim 10 \ \mu s$)
- Ambient HONO0.1 ppb 15 ppb

CRDS Spectrum of NO₂

CRDS Detection Sensitivity for NO₂

Variations in NO₂ concentration during daytime

Research funded by:

California Air Resources Board

U.S. Environmental Protection Agency

National Science Foundation

U.S. Department of Energy

Thank you for your attention

